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Abstract

Multimodal emotion recognition (MER) aims to identify emotional
states by integrating and analyzing information from multiple
modalities. However, inherent modality heterogeneity and incon-
sistencies in emotional cues remain key challenges that hinder
performance. To address these issues, we propose a Decoupled
Representations with Knowledge Fusion (DRKF) method for MER.
DRKF consists of two main modules: an Optimized Representa-
tion Learning (ORL) Module and a Knowledge Fusion (KF) Module.
ORL employs a contrastive mutual information estimation method
with progressive modality augmentation to decouple task-relevant
shared representations and modality-specific features while mitigat-
ing modality heterogeneity. KF includes a lightweight self-attention-
based Fusion Encoder (FE) that identifies the dominant modality and
integrates emotional information from other modalities to enhance
the fused representation. To handle potential errors from incor-
rect dominant modality selection under emotionally inconsistent
conditions, we introduce an Emotion Discrimination Submodule
(ED), which enforces the fused representation to retain discrimi-
native cues of emotional inconsistency. This ensures that even if
the FE selects an inappropriate dominant modality, the Emotion
Classification Submodule (EC) can still make accurate predictions
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by leveraging preserved inconsistency information. Experiments
show that DRKF achieves state-of-the-art (SOTA) performance on
IEMOCAP, MELD, and M3ED. The source code is publicly available
at https://github.com/PANPANKK/DRKEF.
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1 Introduction

Multimodal emotion recognition based on speech and text is es-
sential for human-computer interaction (HCI) [1]. The MER’s fun-
damental concept is to acquire modality representations and sub-
sequently fuse them [2, 3]. In representation learning, contrastive
learning-based methods have been widely applied to various mul-
timodal tasks [4-6]. These methods rely on the multi-view redun-
dancy assumption, which states that the shared information across
different modalities can sufficiently capture the critical features
required for downstream tasks [7, 8].

Although multimodal emotion representation learning has made
significant progress under this assumption, it does not always hold
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and you know the consequences.
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Figure 1: Illustration of Modality-specific Emotions and True
Labels in a Multi-view Non-redundant Scenario.

in broader real-world multimodal scenarios. In multi-view non-
redundant scenarios, the information contained in each modality is
not necessarily relevant to the downstream task. To address this
issue, existing studies [9-12] leverage techniques such as adversar-
ial learning, parameter sharing, and subspace learning to decouple
modality-specific and shared features.

The aforementioned methods are capable of extracting modality-
specific and shared features. However, they are unable to ensure that
the learned representations are pertinent to the tasks. [13] adopts an
information-theoretic perspective to describe the modality-specific
and shared information pertaining to a given task. A Contrastive
Mutual Information Estimation (CMIE) method has been introduced
to optimize modality-specific and shared representations that are
applicable to the task [14]. In such methods, neural networks (NNs)
are typically employed to determine mutual information scores
between modalities [15, 16]. However, the efficacy of representation
learning can be compromised by the instability of these approaches
when there is a substantial distributional disparity between task
labels and input modalities.

In multimodal representation fusion, early methods primarily
relied on tensor fusion and simple feature concatenation [17, 18].
Recent advances have introduced cross-attention mechanisms to
better model semantic dependencies and task-oriented alignment
across modalities. However, these mechanisms can still suffer from
the introduction of redundant noise and increased modeling ambi-
guity, particularly when emotion-related information is inconsis-
tently conveyed across different modalities [19, 20].

In this work, we aim to address two key challenges in MER:
the difficulty of extracting and aligning task-relevant information
across heterogeneous modalities—stemming from their inherent
representational differences—and the inconsistencies in emotional
cues conveyed by different modalities, as illustrated in Fig. 1. To
tackle these challenges, we propose a Decoupled Representations
with Knowledge Fusion Method (DRKF) for MER. Our model con-
sists of two modules: the Optimized Representation Learning Module
(ORL), inspired by [21], indirectly aligns the input modalities with
the label distribution through progressive modality augmentation
learning, thereby overcoming the challenge of mutual information
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estimation in the CMIE method caused by modality-label distri-
bution discrepancies. Following the ORL, the Knowledge Fusion
Module (KF) consists of a Fusion Encoder (FE), an Emotion Classifi-
cation Submodule (EC), and an Emotion Discrimination Submodule
(ED). The FE, based on self-attention mechanism, identifies the
dominant modality of the current sample and integrates comple-
mentary emotional information from other modalities to enhance
the fused representation. Under emotionally inconsistent condi-
tions, the ED further constrains the fused representation to retain
discriminative cues regarding intermodal emotional discrepancies,
thereby mitigating potential errors caused by incorrect dominant
modality selection. Finally, the EC takes the fused representation
as input to perform the emotion classification task. Through their
collaborative design, these three components enable more robust
and adaptable multimodal emotion recognition.

e We introduce an optimized representation learning mod-
ule, which learns an optimal enhanced modality to guide
the alignment of distributions across modalities as well as
between modalities and labels, thereby facilitating more ef-
fective representation decoupling.

e We introduce a Knowledge Fusion Module that leverages
collaborative learning to integrate fusion encoding, emo-
tion consistency discrimination, and emotion classification,
ensuring reliable emotion recognition.

e Extensive experiments on three benchmark datasets demon-
strated that the proposed DRKF framework surpasses state-
of-the-art methods.

2 Related Work

2.1 Representation Learning

Bengio [22] emphasized that the performance of machine learning
models heavily depends on the selection of input features. Different
feature representations can entangle varying underlying explana-
tory factors, potentially obscuring their distinct contributions to the
learning process. Multimodal emotion representations can be cate-
gorized into feature engineering-based representations and deep
neural network-based representations. The former relies on expert
knowledge, including acoustic features extracted using openSMILE
[23] and textual features from emotion lexicons [24] and syntactic
structures [25], while the latter leverages deep learning to automat-
ically extract high-level features. Representative models include
BERT [26], RoBERTa [27], wav2vec 2.0 [28], and WavLM [29].
Building on deep representations, multimodal emotion represen-
tation learning can be further categorized into single-stream and
multi-stream models. Single-stream models use a shared encoder to
learn joint representations within a unified latent space, whereas
multi-stream models maintain separate pathways for each modality
and integrate them later to capture cross-modal interactions [30].
While multi-stream architectures effectively preserve modality-
specific information and enhance cross-modal interactions, they
can also introduce irrelevant noise, hindering optimal fusion per-
formance. Decoupled representation serves as a key mechanism to
filter out irrelevant information and improve fusion quality [9].
To enhance the effectiveness of decoupled representations, re-
cent studies have incorporated contrastive learning to reduce inter-
modal distributional discrepancies and achieve decoupling of shared
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Figure 2: Overview of the Proposed DRKF Framework. It consists of two components: the ORL Module, which improves
task-relevant modality mutual information estimation, and the KF Module, which models modality interactions for final
emotion classification.

representations across modalities [31, 32]. Additionally, some ap-
proaches employ subspace mapping techniques, adversarial learn-
ing, and orthogonality constraints to extract task-relevant modality-
specific information [10, 11, 33], while others leverage information-
theoretic methods to quantify the task relevance of private infor-
mation, further improving the interpretability and discriminative
power of learned representations [14, 34, 35].

2.2

Morency et al. [36] identified five core challenges in multimodal
learning: representation learning, modality conversion, modality
alignment, co-learning, and modality fusion. Among these, modality
fusion is essential for cross-modal knowledge integration. Exist-
ing fusion strategies can be broadly categorized into feature-level,
decision-level, and interaction-based fusion. Feature-level fusion
combines features from different modalities, such as through con-
catenation [37] or time-scale-aware integration [38], but increases
the classifier’s burden in handling redundancy and modality mis-
alignment. Decision-level fusion [39] integrates modality-specific
predictions using methods like ensemble learning, weighted av-
eraging, or voting, but often overlooks fine-grained interactions
crucial for tasks like emotion recognition. Interaction-based fusion
learns cross-modal relationships through attention mechanisms
or latent space alignment. For instance, [40] proposed a multi-hop
attention mechanism, allowing textual tokens to iteratively query
audio features, thus enhancing fusion expressiveness.

Although attention-based fusion strategies are effective, they
require task-specific queries to adapt to dataset variations, limiting
unified multimodal modeling. To address this, [19, 20] proposed a
bidirectional cross-attention mechanism to improve adaptability
and generalization across datasets. However, while bidirectional
cross-attention has proven effective, it may introduce noise when
dealing with emotionally inconsistent modalities, leading to model
confusion and performance degradation.

Modality Fusion

3 APPROACH
3.1 Problem Statement

Our proposed model takes raw speech and text as input, aiming to
integrate acoustic information from speech and semantic informa-
tion from text to comprehensively determine the conveyed emotion.
The input speech and text are first processed by their respective en-
coders, resulting in speech sequence vectors Sseq = {51,582, ..,5m}
and text sequence vectors Tseq = {t1,t2,...,1n}, where m and n
denote the lengths of the encoded sequences. The outputs of the
encoders are optimized through the ORL Module. The optimized
representations are then fed into the KF Module, which outputs
the final emotion probability vector P € {p1,p2,...,pn}-

3.2 Model Architecture

Fig. 2 illustrates the proposed DRKF. It consists of two key compo-
nents: the ORL Module, and the KF Module.

(1) The ORL Module comprises three components: Modality
Encoding (ME), Progressive Augmentation (PA), and Decoupled
Representations (DR). The ME integrates an acoustic encoder and
a semantic encoder to extract modality-specific embeddings. The
acoustic encoder, based on the pre-trained wav2vec2 model?, trans-
forms raw audio into acoustic embeddings, while the semantic
encoder, leveraging the pre-trained RoBERTa model?, encodes raw
text into semantic embeddings. The PE employs two identically
structured residual autoencoder networks, each consisting of five
residual autoencoder blocks with six linear layers per block. The
purpose of this component is to learn the optimal feature augmenta-
tion for the acoustic and semantic modalities. The DR includes con-
trastive training and emotion modality (Emodality) shuffling mech-
anisms. The contrastive training method eliminates task-irrelevant
modality noise and facilitates the learning of decoupled representa-
tions. The Emodality shuffling mechanism restructures optimized
modality pairs for downstream processing.

!https://huggingface.co/audeering/wav2vec2-large-robust- 12-ft-emotion-msp-dim
2https://huggingface.co/FacebookAl/roberta-large
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(2) The KF Module comprises three components: the Fusion
Encoder (FE), Emotion Classification Submodule (EC) and the Emo-
tion Discrimination Submodule (ED). The FE is a lightweight, self-
attention-based encoder that identifies the dominant modality and
integrates supplementary emotional information from other modal-
ities. To address potential errors caused by incorrect dominant
modality selection under emotionally inconsistent conditions, the
ED enforces the fused representation to retain discriminative cues
related to intermodal emotional discrepancies. This mechanism en-
sures that, even when the FE fails to select the optimal modality, the
EC can still make accurate predictions by leveraging the preserved
inconsistency information. Both ED and EC are implemented as
two independent multilayer perceptrons (MLPs).

3.3 The ORL Module

Decoupled Representations

Progressive enhancement

S =1I(X;; X;,Y)

L.

VAN
9 Related |
N -

Py=I(X2;Y[Xy) Xo

Iteration

Lyise

Py =I(X;Y[X3)
L

Filter out

Unrelated

Figure 3: Decoupled Representations Learning Flowchart.

3.3.1 The Decoupled Representations. We employed an information-
theoretic-based decoupled representation approach to filter out task-

irrelevant modality information and optimize task-relevant repre-

sentations, including modality-shared information S and modality-
specific information P. The task-relevant modality information can

be expressed by the following formula:

I(X1,X2;Y) =S+ P+ Py (1)

Where, I(X1, X2;Y) is the mutual information between the task
variable Y and the modalities X7 and Xj.

S=I1(X1;X2) — I(X1; X2 | Y) (2)

P =1(X3;Y | X2), Py=I(Xo;Y | Xy) 3)

Where, S is the task-relevant modality-shared mutual informa-

tion, P; and P are the task-relevant modality-specific mutual in-
formation within each modality.

o _plrx)
I(Xl,XZ)—/p(xl’XZ)logp(xl)p(XZ)

10Xz | Y) = [ plx1, xz.y) log 28 gy dxzdy - (5)

Where, I(X1;X2) represents the total mutual information be-
tween the two modalities X7 and X3, I(X7; X2 | Y) represents the

dx1 dxy 4)
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conditional mutual information between X7 and X given the task
Y, reflecting task-irrelevant modality-shared mutual information.

Calculating mutual information, as shown in the formula above,
requires a closed-form density function and a log-density ratio
between the joint and marginal distributions in a manageable form.
However, in real-world machine learning tasks, we only have access
to samples from the joint distribution, making direct computation of
mutual information difficult and forcing us to rely on approximation
methods.

3.3.2 The Progressive Augmentation. To address the challenge of
directly computing mutual information, we introduce contrastive
mutual information estimation, formulated as follows:

exp f (x1,x2)

I(X1;X2) = Exy, %2, x5 |log (6)
Ymexpf (xl,xz_)
. - _ exp f (x1,%2.Y)

In the above equations, M represents the batch size during train-
ing. The expectation operator E is taken over the joint distribution
of positive and negative sample pairs, with or without conditioning
on the label y. The function f (-, -) measures correlation between
inputs. Positive samples (x1, x2) or (x1, x2, y) share semantic align-
ment, while negative samples x; or (x;,y) are drawn from other
instances in the batch.

Although contrastive mutual information estimation circum-
vents the challenges of direct computation, it still faces a critical lim-
itation: the representation gap between modalities and task labels
further increases the difficulty of mutual information estimation. As
shown in Eq. (7), x1 and x; follow continuous distributions in their
respective feature spaces, whereas y is discrete. This modality-label
distribution mismatch makes score estimation more challenging.
To tackle these challenges, we propose a progressive modality aug-
mentation strategy that guides the alignment between modalities
and between modality and label distributions by iteratively learning
the optimal augmented modality. The optimal augmented modality
is defined as follows:

e Optimal augmented modality: When I(X;Y) = I(X;X1), X1
is the optimal unimodal augmentation of X, which implies
that the only information shared between X and X; is task-
relevant, and that X and X; lie within the same subspace.

Our proposed progressive augmentation strategy, as illustrated
in Fig. 3, is designed to learn the optimal augmented modality. Un-
like traditional static feature augmentation methods, our proposed
progressive augmentation strategy is a dynamic optimization ap-
proach based on original modality features, enabling a stepwise
optimization process to achieve optimal modality augmentation.
To guide the learning of the augmented features, we introduce two
carefully designed constraints. First, by constraining the distribu-
tion discrepancy between the augmented modality and the original
modality, we ensure that the augmented features reside in the same
subspace as the original modality features, thus reducing modality
heterogeneity. Second, by minimizing the discrepancy between the
augmented modality and the task label distribution, we ensure that
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the augmented features are aligned with the task label distribu-
tion to the greatest extent. Finally, we control the model’s overall
performance by adjusting the weights of these two constraints.
The process of progressive augmentation can be described by
the following equations:
We utilize a residual autoencoder fyg to learn the optimal uni-
modal augmentation Tseq, T.;, for the text feature sequence.

Tseq = faE(Tseq): fcls = an(TSEq) 3)

Where Tseq € R4 %4z denotes the feature sequence output of
the text encoder, with dj as the sequence length and d; as the
dimensionality of each sequence element. T,;, € R represents
the global feature vector obtained by average pooling the sequence
feature vector.

Similarly, the optimal unimodal augmentation for the speech
feature sequence is calculated as follows:

§seq = fAE(Sseq)’ §cls = an(gseq) 9

Where Sseq € R %4z denotes the feature sequence output of
the speech encoder, with d), as the sequence length and d; as the
dimensionality of each sequence element. S, € R4 represents
the global feature vector obtained by average pooling the sequence
feature vector.

To ensure that the augmented modality remains in the same
subspace as the original modality, we use the Mean Squared Er-
ror (MSE) loss to constrain the learning space of the augmented
modality. Meanwhile, the Kullback-Leibler divergence (KLD) loss
is employed to enforce the augmented modality to learn the distri-
bution of the task labels. The calculation formula is as follows:

M
1
Lmse = M Z [ S;eq S;eq Tsleq seq ‘ ] (10)
i=1
1 & & v§
Lkip = Mzzyflog% (11)
i=1 c=1 Yi
La=a Lyuse+LkLp (12)
Here, Sseq and Tsleq represent the original feature sequence vec-

tors of the i-th sample in the speech and text modalities, respectively.
seq and Tsqu represent the augmented feature sequence vectors.
M is the batch size, and C denotes the total number of emotion
categories. The true label of the i-th sample in the fusion modality
for category c is denoted as y{, while §{ represents the predicted
probability for the same sample and category. £, refers to the final

augmentation loss, and « is a hyperparameter.

3.3.3 Contrastive Mutual Information Estimation. The maximum
task-relevant modality mutual information can be transformed
into minimizing the negative of contrastive mutual information.
Therefore, the objective function for our decoupled representation
learning method is defined as follows:

=98t ). 26 = g(8!, ). 2k = (T} ). 2h = g(Th ) (13)
exp(s1m(zs,zs)/r)
Z ALER] exp(snn(z’ Nk)/r)
exp(mm(zT, T)/‘[)
Z Lk #1] exp(mm(zT, ZT)/T)

L, = (14)

(15)

Ly, =
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exp(sim(zg, z%)/r)
Ziw:l exp(sim(zg, zl;)/z')

In the above formulas, g(+) represents a projection function im-
plemented via an MLP; sim(-, -) represents the cosine similarity;
Ly, and Lygr,. denote the intra-modality CMIE objective func-
tions,l while LM;S- «r. corresponds to the intermodality CMIE ob-
jective function. o

Finally, our CMIE optimization objective L. is defined as follows:

(16)

LMIS,-&T,— = _log

1

M
i=1

3.4 The KF Module

3.4.1 The Fusion Encoder. To enable the proposed knowledge fu-
sion module to effectively model the complex interactions between
different modalities, we applied a specialized concatenation process
to the multimodal input sequences, as shown in Equation 18.

Xfusion = fFE (Concat (Ccls> Sseq, Csep, Tseq: CSEP)) (18)

Where, Concat(-) denotes the concatenation function, C.j and
Csep represent the classification token vector and separator token
vector, respectively. C.j, is designed to aggregate global information
from the input features during the modality fusion process, while
Csep acts as a boundary to distinguish between the two modalities,
facilitating the ED in learning modality-consistent information.
Finally, frg(-) processes the concatenated sequence to generate the
fused feature vector Xfysion-

3.4.2 The Emotion Discrimination Submodule. The ED is imple-
mented as an MLP, trained on data generated through the Emodality
shuffling process in the ORL module. Specifically, for each batch
of data, samples from different modalities are randomly combined
to create new speech-text pairs. If the original emotion labels of
both modalities in a newly formed pair match, the emotional infor-
mation is considered consistent (assigned a label of 1). Conversely,
if the labels do not match, the emotional information is deemed
inconsistent (assigned a label of 0). The optimization function for
this module is as follows:

MZ
Ly ==5 2, [Yilog¥i+ 1-Ylog(1 =] (19)
i=1
Where, M is the batch size, Y; is the true label of the i-th sample in
the binary emotion decoupling task, and ¥; represents the predicted
probability of the i-th sample output.

3.4.3 The Emotion Classification Submodule. We employ an inde-
pendent MLP to perform multimodal emotion classification. Specif-
ically, the EC takes as input the correctly matched sample pairs gen-
erated by the Emodality shuffling process. The calculation processes
for the emotion classification loss L is presented in Equation 20.

=-> Z Z y; log (20)

llcl

Where, M is the batch size, C is the number of emotion categories,
y{ is the true label of the i-th sample in the fusion modality for
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Table 1: Model Performance Comparison on the IEMOCAP Dataset

Models Audio & Text Encoder ACC (%) WACC (%) Avg (%)
GBAN [41] CNN-LSTM 70.1 72.4 71.2
MSER-MVAM [42] CNN-LSTM 74.2 75.4 74.8
MSER-CADF [43] CNN-GRU 77.2 76.5 76.8
MCEN [44] CNN-Roberta 77.8 76.0 76.9
SAMS [45] BiGRU-Bert 78.1 76.6 773
LLMSER [46] BiLSTM-Bert 78.3 78.1 78.2
KS-Transformer [47] Wav2vec-Roberta 75.3 74.3 74.8
KBCAM [438] Wav2vec2-Bert 77.0 75.5 76.2
DBT [49] Wav2vec2-Roberta 78.9 77.8 78.3
Ours(ORKF) Wav2vec2-Roberta 80.7 79.9 80.3
ASota - 12.28 12.30 12.55

Notes: Bold values indicate the best performance. Underlined values denote the second-best performance. ASota represents the relative
improvement of our proposed method compared to the second-best model. (T) indicates an improvement over the second-best performance,
where higher values are better. (]) indicates a decrease relative to the best performance, where lower values are better.

category c, and g represents the predicted probability of the i-th
sample in the fusion modality for category c.

Finally, our objective function, denoted as £, is formally defined
in Equation 21.

L=Lg+f - Le+y - Le+6-Ly (21)
Where f, y, and § are hyperparameters.

4 Experiment Settings
4.1 Datasets

We validated our proposed model on three publicly available multi-
modal datasets, IEMOCAP [50], MELD [51] and M3ED [52]. Specif-
ically, IEMOCAP is a recorded dialogue dataset with emotion labels
including anger, happiness, sadness, frustration, excitement, fear,
surprise, disgust, and others. To ensure consistency with previ-
ous research, we focused on four emotion categories: happiness,
sadness, anger, and neutral, where excitement was merged into
the happiness category, resulting in a total of 5,531 samples. The
experiments followed a five-fold leave-one-session-out strategy,
Using Unweighted Accuracy (ACC), Weighted Accuracy (WACC),
and their average (Avg) to evaluate model performance. MELD
is a challenging multi-party conversation dataset, annotated with
seven emotion labels. Unlike IEMOCAP, this dataset is divided into
training, development, and test sets, providing a standardized train-
ing and evaluation strategy for models. WACC, Weighted F1 score
(WF1) and Avg were used to assess the performance of the models
on this dataset. M3ED is the first Chinese multi-label emotion di-
alogue dataset. The utterance-level emotion labels include seven
categories: happiness, surprise, sadness, disgust, anger, fear, and
neutral. Following previous studies, we used Precision, Recall, ACC,
Micro-F1 (F1) score and the Avg as evaluation metrics to assess
model performance.

4.2 Implementation Details

Our model is implemented using the PyTorch framework, with
AdamW as the optimizer, a learning rate of 1e-5, and a batch size

of 4. The output dimension of the projection head function in con-
trastive learning is set to 1024, and the multimodal fusion layer has
8 attention heads. The values of the loss function hyperparameters
are set t0 0.2, 0.2, 1.0, and 0.2, respectively. Our training is conducted
on a Linux system with an A100 GPU, for a total of 100 epochs.

4.3 Baseline Models

To validate the effectiveness of the proposed method, we compared
ORKEF with the current advanced baseline methods. The baselines
used to evaluate ORKF across different datasets are as follows. It
is important to note that some baseline models are evaluated on
multiple datasets, and we provide their descriptions only when they
are mentioned for the first time.

Compared Methods for IEMOCAP Dataset: GBAN [41] with
gated attention fusion; DIMMN [53] using dynamic memory interac-
tion; MSER-CADF [43] with cross-attention fusion; MCFN [44] em-
ploying dual-stream temporal-spatial modeling; SAMS [45] aligning
semantics across modalities; LLMSER [46] enhancing prompts in
language models; KS-Transformer [47] using pre-trained feature
extraction and early fusion; KBCAM [48] incorporating Bayesian
attention with external knowledge; DBT [49] utilizing dual-branch
Transformer with fine-tuning fusion. Compared Methods for MELD
Dataset: MCSCAN [54] with parallel cross/self-attention; DIMMN
[53] with dynamic memory integration; SACMA [55] integrating
speaker-aware emotion recognition; SMCN [56] self-guided modal-
ity alignment; RMERCT [57] using Transformer-based cross-modal
fusion; SMIN [58] semi-supervised multimodal learning; HiMul-
LGG [59] hierarchical decision fusion strategy. Compared Methods
for M3ED Dataset: MSCNN-SPU [60] integrating multi-scale CNN
with statistical pooling; M-TLEAF [61] using bidirectional GRU and
Transformer fusion; CARAT [62] employing contrastive feature
reconstruction and aggregation.

4.4 Results

As shown in Table 1, the proposed ORKF method achieves the best
overall performance on the IEMOCAP dataset, with an ACC of
80.7%, a WACC of 79.9%, and an average (Avg) of 80.3%. In terms of
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Table 2: Model Performance Comparison on the MELD Dataset

Models Audio & Text Encoder WACC (%) WF1 (%) Avg (%)
MCSCAN [54] CNN & LSTM-LSTM N/A 59.2 59.2%
DIMMN [53] Attention-CNN 60.6 58.6 59.6
SACMA [55] LSTM-TextCNN 62.3 59.3 60.8
MCEN [44] CNN-Roberta 64.5 62.2 63.3
SMCN [56] GRU-Bert 64.9 62.3 63.6
SAMS [45] BiGRU-Bert 65.4 62.6 64.0
RMERCT [57] WaveRNN-GPT 63.1 64.0 63.5
SMIN [58] Wav2vec-Roberta 65.5 64.5 65.0
HiMul-LGG [59] BiGRU-Roberta 66.2 65.1 65.6
Ours(ORKF) Wav2vec2-Roberta 66.7 65.4 66.0
ASota — 10.75 10.46 10.60

Notes: N/A indicates that the metric value was not provided in the original paper. ¥ denotes that the average value was calculated from

known experimental results due to irreproducibility.

Table 3: Model Performance Comparison on the M3ED Dataset

Models Audio & Text Encoder

Precision (%) Recall (%) ACC (%) F1(%) Avg (%)

MSCNN-SPU T [60] CNN-TextCNN
M-TLEAF T [61] CNN-BERT

MCEFN * [44] CNN-Roberta

SAMS * [45] BiGRU-Bert
CARATT [62] Transformer Encoder-Based
Ours(ORKF) Wav2vec2-Roberta
ASota —

443 50.1 45.0 47.0 46.6
45.2 49.1 46.7 47.1 47.0
44.7 50.9 46.1 47.6 473
47.1 515 51.1 49.2 49.7
45.0 51.4 443 48.0 47.1
52.6 51.6 50.6 52.0 51.7

1116 10.38 1098 1569  14.02

Notes: t The results are obtained through our own reproduction experiments.

ACC and Avg, ORKF achieves relative improvements of approxi-
mately 2.28% and 2.55%, respectively, compared to the second-best
method DBT (ACC of 78.9%, Avg of 78.3%). For the WACC met-
ric, ORKF shows a relative improvement of about 2.30% over the
second-best method LLMSER (WACC of 78.1%).

To further validate the performance of ORKF, we evaluated the
model on the MELD dataset. The experimental results are presented
in Table 2.

According to the experimental comparison results in Table 2,
ORKF demonstrates superior performance even on the highly im-
balanced MELD dataset. Specifically, ORKF achieves a WACC of
66.7, a WF1 of 65.4, and an average score of 66.0, all of which repre-
sent the best results among the compared methods. Although ORKF
achieved SOTA performance on both the IEMOCAP and MELD
datasets, it should be noted that these datasets are English datasets
with single-label annotations, where task-relevant information may
primarily rely on shared mutual information. To further validate
the model’s performance, we introduced the Chinese multi-label
emotion recognition dataset M3ED for testing.

As shown in Table 3, even on the more complex multi-label
Chinese emotion recognition dataset, ORKF demonstrates strong
performance, achieving an F1 score of 52.0 and an average score of
51.7, reaching SOTA results.

Overall, the comparative experimental results demonstrate that
ORKEF effectively integrates information from multiple modalities,
achieving robust emotion recognition.

4.5 Ablation Study

To evaluate the effectiveness of the proposed strategy, we conducted
ablation experiments on the IEMOCAP, MELD, and M3ED datasets,
with the results presented in Table 4.

As shown in Table 4, the comparison between the first and fourth
rows demonstrates that removing the ED leads to a noticeable per-
formance drop across all three datasets, highlighting its critical role
in helping the fusion module learn effective joint representations.
The comparison between the second and third rows further val-
idates the effectiveness of the proposed Progressive Contrastive
Mutual Information Estimation (PCMI) approach in enhancing de-
coupled representation learning and improving overall model per-
formance.

To further verify the effectiveness of the proposed decoupled
representation learning strategy based on PCMI, we visualized the
learned embeddings on the test set (session 2) of the IEMOCAP
dataset using t-distributed Stochastic Neighbor Embedding (t-SNE),
as shown in Figs. 4a—4c. From the figures, it can be observed that the
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Table 4: Results for Strategy Analysis

Methods IEMOCAP MELD M3ED
BME PCMI CMIE FE. FEg ED ACC WACC WACC WF1 ACC F1
v v 78.1 77.0 64.5 63.3 47.1 49.3
v v v 78.4 77.5 64.7 63.4 47.3 49.9
v v v 79.7 78.4 65.6 64.7 47.9 50.8
v v v 79.0 78.1 65.1 63.5 48.1 51.1
v v v v 78.2 76.3 64.3 63.2 46.7 48.5
v v v v 80.7 79.9 66.7 65.4 50.6 52.0

Notes: The v'symbol indicates that the corresponding method is applied. BME refers to the BiModal Encoder. PCMI represents the Progressive
Contrastive Mutual Information Estimation. CMIE represents the Contrastive Mutual Information Estimation introduced by [14]. FE. denotes
the fusion encoder with a bidirectional cross-attention mechanism. FE; denotes the fusion encoder with a self-attention mechanism. ED

refers to the emotion discrimination submodule.
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(a) Distribution of Different Emotion Cate-
gories before Using PCMI Method

(b) Distribution of Different Emotion Cate-
gories after Using CMIE

(c) Distribution of Different Emotion Cate-
gories after Using PCMI Method

Figure 4: Comparison of Emotion Category Distributions: PCMI vs. CMIE and Baseline.

decoupled representation learning strategy based on PCMI effec-
tively facilitates the learning of well-structured and discriminative
representations.

Finally, the comparison between the fifth and sixth rows shows
that the proposed self-attention-based fusion encoder outperforms
the traditional cross-attention fusion encoder, offering more sub-
stantial gains in emotion recognition accuracy.

5 Conclusion

To address the prevalent challenges of modality heterogeneity and
emotional inconsistency across modalities in MER tasks, we pro-
pose a novel framework named Decoupled Representations with
Knowledge Fusion (DRKF). The framework consists of two core
modules: the Optimized Representation Learning (ORL) module
and the Knowledge Fusion (KF) module. Specifically, the ORL mod-
ule aims to decouple task-relevant modality-shared and modality-
specific information while reducing inter-modality heterogeneity,
thereby facilitating more effective multimodal fusion. The KF mod-
ule is designed to learn a fusion representation that is sensitive

to emotional discrepancies across modalities, which enhances the
model’s robustness in scenarios where emotional cues from dif-
ferent modalities are not aligned. Extensive experiments on three
widely used benchmark datasets for multimodal emotion recogni-
tion demonstrate that DRKF outperforms several state-of-the-art
models across multiple evaluation metrics, exhibiting strong per-
formance and generalization capabilities.

Despite the promising results achieved by the proposed DRKF
model on bimodal emotion recognition tasks, certain limitations
remain. The current evaluation is limited to the audio-text bimodal
setting, and has not yet been extended to trimodal or higher-order
multimodal fusion scenarios. In future work, we plan to further
explore the adaptability and scalability of DRKF in more complex
multimodal input settings, such as those involving video, speech,
and text, to better address the demands of real-world multimodal
emotion recognition applications.
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